High dimensional gaussian classification
نویسنده
چکیده
High dimensional data analysis is known to be as a challenging problem (see [10]). In this article, we give a theoretical analysis of high dimensional classification of Gaussian data which relies on a geometrical analysis of the error measure. It links a problem of classification with a problem of nonparametric regression. We give an algorithm designed for high dimensional data which appears straightforward in the light of our theoretical work, together with the thresholding estimation theory. We finally attempt to give a general treatment of the problem that can be extended to frameworks other than gaussian. AMS 2000 subject classifications: Primary 62C20.
منابع مشابه
تعیین ماشینهای بردار پشتیبان بهینه در طبقهبندی تصاویر فرا طیفی بر مبنای الگوریتم ژنتیک
Hyper spectral remote sensing imagery, due to its rich source of spectral information provides an efficient tool for ground classifications in complex geographical areas with similar classes. Referring to robustness of Support Vector Machines (SVMs) in high dimensional space, they are efficient tool for classification of hyper spectral imagery. However, there are two optimization issues which s...
متن کاملStable Gaussian radial basis function method for solving Helmholtz equations
Radial basis functions (RBFs) are a powerful tool for approximating the solution of high-dimensional problems. They are often referred to as a meshfree method and can be spectrally accurate. In this paper, we analyze a new stable method for evaluating Gaussian radial basis function interpolants based on the eigenfunction expansion. We develop our approach in two-dimensional spaces for so...
متن کاملGENERAL SYNCHRONIZATION OF COUPLED PAIR OF CHAOTIC ONE-DIMENSIONAL GAUSSIAN MAPS
In this paper we review some recent ideas of synchronization theory. We apply this theory to study the different synchronization aspects of uni-directionally coupled pair of chaotic one-dimensional Gaussian maps.
متن کاملClassification of Chronic Kidney Disease Patients via k-important Neighbors in High Dimensional Metabolomics Dataset
Background: Chronic kidney disease (CKD), characterized by progressive loss of renal function, is becoming a growing problem in the general population. New analytical technologies such as “omics”-based approaches, including metabolomics, provide a useful platform for biomarker discovery and improvement of CKD management. In metabolomics studies, not only prediction accuracy is ...
متن کاملGaussian mixture models for the classification of high-dimensional vibrational spectroscopy data
In this work, a family of generative Gaussian models designed for the supervised classification of high-dimensional data is presented as well as the associated classification method called High Dimensional Discriminant Analysis (HDDA). The features of these Gaussian models are: i) the representation of the input density model is smooth; ii) the data of each class are modeled in a specific subsp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008